Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1360268, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633703

RESUMEN

Recent studies have expanded the genomic contours of the Acidithiobacillia, highlighting important lacunae in our comprehension of the phylogenetic space occupied by certain lineages of the class. One such lineage is 'Igneacidithiobacillus', a novel genus-level taxon, represented by 'Igneacidithiobacillus copahuensis' VAN18-1T as its type species, along with two other uncultivated metagenome-assembled genomes (MAGs) originating from geothermally active sites across the Pacific Ring of Fire. In this study, we investigate the genetic and genomic diversity, and the distribution patterns of several uncharacterized Acidithiobacillia class strains and sequence clones, which are ascribed to the same 16S rRNA gene sequence clade. By digging deeper into this data and contributing to novel MAGs emerging from environmental studies in tectonically active locations, the description of this novel genus has been consolidated. Using state-of-the-art genomic taxonomy methods, we added to already recognized taxa, an additional four novel Candidate (Ca.) species, including 'Ca. Igneacidithiobacillus chanchocoensis' (mCHCt20-1TS), 'Igneacidithiobacillus siniensis' (S30A2T), 'Ca. Igneacidithiobacillus taupoensis' (TVZ-G3 TS), and 'Ca. Igneacidithiobacillus waiarikiensis' (TVZ-G4 TS). Analysis of published data on the isolation, enrichment, cultivation, and preliminary microbiological characterization of several of these unassigned or misassigned strains, along with the type species of the genus, plus the recoverable environmental data from metagenomic studies, allowed us to identify habitat preferences of these taxa. Commonalities and lineage-specific adaptations of the seven species of the genus were derived from pangenome analysis and comparative genomic metabolic reconstruction. The findings emerging from this study lay the groundwork for further research on the ecology, evolution, and biotechnological potential of the novel genus 'Igneacidithiobacillus'.

2.
Sci Rep ; 13(1): 10876, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37407610

RESUMEN

The recent revision of the Acidithiobacillia class using genomic taxonomy methods has shown that, in addition to the existence of previously unrecognized genera and species, some species of the class harbor levels of divergence that are congruent with ongoing differentiation processes. In this study, we have performed a subspecies-level analysis of sequenced strains of Acidithiobacillus ferrooxidans to prove the existence of distinct sublineages and identify the discriminant genomic/genetic characteristics linked to these sublineages, and to shed light on the processes driving such differentiation. Differences in the genomic relatedness metrics, levels of synteny, gene content, and both integrated and episomal mobile genetic elements (MGE) repertoires support the existence of two subspecies-level taxa within A. ferrooxidans. While sublineage 2A harbors a small plasmid related to pTF5, this episomal MGE is absent in sublineage 2B strains. Likewise, clear differences in the occurrence, coverage and conservation of integrated MGEs are apparent between sublineages. Differential MGE-associated gene cargo pertained to the functional categories of energy metabolism, ion transport, cell surface modification, and defense mechanisms. Inferred functional differences have the potential to impact long-term adaptive processes and may underpin the basis of the subspecies-level differentiation uncovered within A. ferrooxidans. Genome resequencing of iron- and sulfur-adapted cultures of a selected 2A sublineage strain (CCM 4253) showed that both episomal and large integrated MGEs are conserved over twenty generations in either growth condition. In turn, active insertion sequences profoundly impact short-term adaptive processes. The ISAfe1 element was found to be highly active in sublineage 2A strain CCM 4253. Phenotypic mutations caused by the transposition of ISAfe1 into the pstC2 encoding phosphate-transport system permease protein were detected in sulfur-adapted cultures and shown to impair growth on ferrous iron upon the switch of electron donor. The phenotypic manifestation of the △pstC2 mutation, such as a loss of the ability to oxidize ferrous iron, is likely related to the inability of the mutant to secure the phosphorous availability for electron transport-linked phosphorylation coupled to iron oxidation. Depletion of the transpositional △pstC2 mutation occurred concomitantly with a shortening of the iron-oxidation lag phase at later transfers on a ferrous iron-containing medium. Therefore, the pstII operon appears to play an essential role in A. ferrooxidans when cells oxidize ferrous iron. Results highlight the influence of insertion sequences and both integrated and episomal mobile genetic elements in the short- and long-term adaptive processes of A. ferrooxidans strains under changing growth conditions.


Asunto(s)
Acidithiobacillus , Elementos Transponibles de ADN , Elementos Transponibles de ADN/genética , Acidithiobacillus/genética , Acidithiobacillus/metabolismo , Hierro/metabolismo , Azufre/metabolismo , Oxidación-Reducción
3.
Microbiol Res ; 266: 127257, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36410318

RESUMEN

The microbial ecology of acidic mine and sulfide cave ecosystems is well characterised with respect to aquatic communities, typically revealing low taxonomic complexity and dominance by a relatively limited number of cosmopolitan acidophilic bacterial and archaeal taxa. Whilst pH, temperature, and geochemistry are recognised drivers of diversity in these ecosystems, the specific question of a possible influence of substratum mineralogy on microbial community composition remains unanswered. Here we address this void, using 81 subterranean mineral samples from a low temperature abandoned, acidic, sulfide ore mine system at Mynydd Parys (Parys Mountain in English), Wales, UK. Four primary and 15 secondary minerals were identified via x-ray diffraction, each sample containing a maximum of five and an average of two minerals. The mineralogy of primary (e.g. pyrite and quartz) and secondary (e.g. melanterite and pisanite) minerals was significantly correlated with prokaryotic community structure at multiple taxonomic levels, implying that the mineralosphere effect reported in less extreme terrestrial environments is also implicated in driving prokaryotic community composition in extremely acidic, base metal-bearing sulfide mineralisation at Mynydd Parys. Twenty phyla were identified, nine of which were abundant (mean relative abundance >1%). While taxa characteristic of acidic mines were detected, for example Leptospirillum (phylum Nitrospirae), Acidithiobacillus (phylum Proteobacteria), Sulfobacillus (phylum Firmicutes) and Ferroplasma (phylum Euryarchaeota), their abundance in individual samples was highly variable. Indeed, in the majority of the 81 samples investigated the abundance of these and other typical acidic mine taxa was low, with 25% of samples devoid of sequences from recognised acidic mine taxa. Most notable amongst the bacterial taxa not previously reported in such environments were the recently cultivated Muribaculaceae family (phylum Bacteroidetes), which often dominated Mynydd Parys samples regardless of their mineralogical content. Our results pose further questions regarding the mechanisms by which taxa not previously reported in such extreme environments appear to survive in Mynydd Parys, opening up research pathways for exploring the biodiversity drivers underlying microbial community composition and function in extremely acidic mine environments.


Asunto(s)
Archaea , Microbiota , Ácidos/metabolismo , Bacterias , Sulfuros/metabolismo , Minerales/metabolismo
4.
Res Microbiol ; 174(3): 104008, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36395968

RESUMEN

Ten strains of extremely acidophilic bacteria, isolated from different environments form a distinct monophyletic clade within the phylum Firmicutes. Comparison of complete genomes of the proposed type strains confirm that they comprise two genera (proposed names Sulfoacidibacillus and Ferroacidibacillus), and at least three species (Sulfoacidibacillus ferrooxidans, Sulfoacidibacillus thermotolerans and Ferroacidibacillus organovorans). The bacterial strains share some physiological traits, including catalysing the dissimilatory oxidation and reduction of iron, and in being obligately heterotrophic. Both species of Sulfoacidibacillus are also able to oxidise elemental sulfur and tetrathionate. Both S. ferrooxidans and Ferroacidibacillus spp. are mesophilic, while S. thermotolerans isolates are moderate thermophiles. The isolates display different degrees of acid-tolerance: Ferroacidibacillus spp. are the most acid-sensitive while the type strain of S. ferrooxidans grows at pH 0.9. MK7 was detected as the sole menaquinone present in all three nominated type strains, and their peptidoglycans all contain meso-2,6 diaminopimelic acid type A1γ. The chromosomal DNA of the strains examined contain between 44 and 52 mol% G + C. The nominated type strains of the new species are S. ferrooxidans S0ABT (= DSM 105355T = JCM 33225T); S. thermotolerans Y002T (= ATCC TSD-104T = JCM 31946T); F. organovorans SLC66T (= ATCC TSD-103T = JCM 31945T).


Asunto(s)
Firmicutes , Hierro , Firmicutes/genética , Ácidos , Ácidos Grasos/análisis , Azufre , ARN Ribosómico 16S/genética , Filogenia , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Técnicas de Tipificación Bacteriana
5.
Front Bioeng Biotechnol ; 10: 937987, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36032724

RESUMEN

Sulfate-reducing bacteria (SRB) catalyse the dissimilatory reduction of sulfate to hydrogen sulfide using a wide range of small molecular weight organic compounds, and hydrogen, as electron donors. Here we report the effects of different combinations of small molecular weight alcohols on the performance and bacterial composition of a moderately low pH sulfidogenic bioreactor (pH 4.0-5.5) operated at 35°C in continuous flow mode. Ethanol alone and methanol or ethanol used in combination with glycerol were evaluated based on their equivalent amounts of carbon. Although evidenced that methanol was utilised as electron donor to fuel sulfidogenesis at pH 5.5, rates of sulfate reduction/sulfide production were negatively impacted when this alcohol was first introduced to the system, though these rates increased in subsequent phases as a result of adaptation of the microbial community. Further increased dosage of methanol again caused rates of sulfidogenesis to decrease. Methanol addition resulted in perturbations of the bioreactor microbial community, and species not previously detected were present in relatively large abundance, including the sulfate-reducer Desulfovibrio desulfuricans. Ethanol utilization was evidenced by the increase in rates of sulfidogenesis as the dosage of ethanol increased, with rates being highest when the bioreactor was fed with ethanol alone. Concentrations of acetate in the effluent liquor also increased (up to 8 mM) as a result of incomplete oxidation of ethanol. This alcohol continued to be used as the electron donor for sulfate reduction when the bioreactor pH was decreased incrementally (to pH 4.0), but rates of sulfidogenesis decreased. The relative abundance of Dv. desulfuricans diminished as the bioreactor pH was lowered, while that of the acidophilic Firmicute Desulfosporosinus acididurans increased. This study has shown that all three alcohols can be used to fuel microbial sulfidogenesis in moderately acidic liquors, though the cost-effectiveness, availability and toxicity to the microbial community will dictate the choice of substrate.

6.
Microbiol Resour Announc ; 11(8): e0027122, 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35862936

RESUMEN

The draft whole-genome sequence of the extremely acidophilic and novel Firmicutes strain S0AB is reported. The genome comprises 3.3 Mbp and has a GC content of 43.72%. In total, 3,240 protein-coding genes, 56 tRNA genes, and 11 rRNA genes were predicted.

7.
Microbiol Resour Announc ; 11(6): e0014922, 2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35575485

RESUMEN

We report the draft genome sequence of the Firmicute strain Y002, a facultatively anaerobic, acidophilic bacterium that catalyzes the dissimilatory oxidation of iron and sulfur and the reduction of ferric iron. Analysis of the genome (2.9 Mb; G+C content, 46 mol%) provided insights into its ability to grow in extremely acidic geothermal environments.

8.
CRISPR J ; 4(5): 656-672, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34582696

RESUMEN

Type IV CRISPR-Cas are a distinct variety of highly derived CRISPR-Cas systems that appear to have evolved from type III systems through the loss of the target-cleaving nuclease and partial deterioration of the large subunit of the effector complex. All known type IV CRISPR-Cas systems are encoded on plasmids, integrative and conjugative elements (ICEs), or prophages, and are thought to contribute to competition between these elements, although the mechanistic details of their function remain unknown. There is a clear parallel between the compositions and likely origin of type IV and type I systems recruited by Tn7-like transposons and mediating RNA-guided transposition. We investigated the diversity and evolutionary relationships of type IV systems, with a focus on those in Acidithiobacillia, where this variety of CRISPR is particularly abundant and always found on ICEs. Our analysis revealed remarkable evolutionary plasticity of type IV CRISPR-Cas systems, with adaptation and ancillary genes originating from different ancestral CRISPR-Cas varieties, and extensive gene shuffling within the type IV loci. The adaptation module and the CRISPR array apparently were lost in the type IV ancestor but were subsequently recaptured by type IV systems on several independent occasions. We demonstrate a high level of heterogeneity among the repeats with type IV CRISPR arrays, which far exceed the heterogeneity of any other known CRISPR repeats and suggest a unique adaptation mechanism. The spacers in the type IV arrays, for which protospacers could be identified, match plasmid genes, in particular those encoding the conjugation apparatus components. Both the biochemical mechanism of type IV CRISPR-Cas function and their role in the competition among mobile genetic elements remain to be investigated.


Asunto(s)
Sistemas CRISPR-Cas/genética , Evolución Molecular , Proteobacteria/genética , Genes Bacterianos , Filogenia , Polimorfismo Genético , Proteobacteria/clasificación
9.
Front Microbiol ; 12: 703177, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34381430

RESUMEN

Using acidophilic bacteria to catalyze the reductive dissolution of oxidized minerals is an innovative process that facilitates the extraction of valuable base metals (principally cobalt and nickel) from limonites, which are otherwise often regarded as waste products of laterite mining. The most appropriate conditions required to optimize reductive mineral dissolution are unresolved, and the current work has reassessed the roles of Acidithiobacillus spp. in this process and identified novel facets. Aerobic bio-oxidation of zero-valent sulfur (ZVS) can generate sufficient acidity to counterbalance that consumed by the dissolution of oxidized iron and manganese minerals but precludes the development of low redox potentials that accelerate the reductive process, and although anaerobic oxidation of sulfur by iron-reducing species can achieve this, less acid is generated. Limited reduction of soluble iron (III) occurs in pure cultures of Acidithiobacillus spp. (Acidithiobacillus thiooxidans and Acidithiobacillus caldus) that do not grow by iron respiration. This phenomenon ("latent iron reduction") was observed in aerated cultures and bioreactors and was independent of electron donor used (ZVS or hydrogen). Sufficient ferrous iron was generated in the presence of sterilized hydrophilic sulfur (bio-ZVS) to promote the effective reductive dissolution of Mn (IV) minerals in limonite and the solubilization of cobalt in the absence of viable acidophiles.

10.
ISME J ; 15(11): 3221-3238, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34007059

RESUMEN

Members of the genus Acidithiobacillus, now ranked within the class Acidithiobacillia, are model bacteria for the study of chemolithotrophic energy conversion under extreme conditions. Knowledge of the genomic and taxonomic diversity of Acidithiobacillia is still limited. Here, we present a systematic analysis of nearly 100 genomes from the class sampled from a wide range of habitats. Some of these genomes are new and others have been reclassified on the basis of advanced genomic analysis, thus defining 19 Acidithiobacillia lineages ranking at different taxonomic levels. This work provides the most comprehensive classification and pangenomic analysis of this deep-branching class of Proteobacteria to date. The phylogenomic framework obtained illuminates not only the evolutionary past of this lineage, but also the molecular evolution of relevant aerobic respiratory proteins, namely the cytochrome bo3 ubiquinol oxidases.


Asunto(s)
Genómica , Proteobacteria , Evolución Molecular , Genoma Bacteriano/genética , Filogenia , Proteobacteria/genética
11.
Front Microbiol ; 12: 802991, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35087502

RESUMEN

Limonitic layers of the regolith, which are often stockpiled as waste materials at laterite mines, commonly contain significant concentrations of valuable base metals, such as nickel, cobalt, and manganese. There is currently considerable demand for these transition metals, and this is projected to continue to increase (alongside their commodity values) during the next few decades, due in the most part to their use in battery and renewable technologies. Limonite bioprocessing is an emerging technology that often uses acidophilic prokaryotes to catalyse the oxidation of zero-valent sulphur coupled to the reduction of Fe (III) and Mn (IV) minerals, resulting in the release of target metals. Chromium-bearing minerals, such as chromite, where the metal is present as Cr (III), are widespread in laterite deposits. However, there are also reports that the more oxidised and more biotoxic form of this metal [Cr (VI)] may be present in some limonites, formed by the oxidation of Cr (III) by manganese (IV) oxides. Bioleaching experiments carried out in laboratory-scale reactors using limonites from a laterite mine in New Caledonia found that solid densities of ∼10% w/v resulted in complete inhibition of iron reduction by acidophiles, which is a critical reaction in the reductive dissolution process. Further investigations found this to be due to the release of Cr (VI) in the acidic liquors. X-ray absorption near edge structure (XANES) spectroscopy analysis of the limonites used found that between 3.1 and 8.0% of the total chromium in the three limonite samples used in experiments was present in the raw materials as Cr (VI). Microbial inhibition due to Cr (VI) could be eliminated either by adding limonite incrementally or by the addition of ferrous iron, which reduces Cr (VI) to less toxic Cr (III), resulting in rates of extraction of cobalt (the main target metal in the experiments) of >90%.

12.
Front Microbiol ; 11: 610836, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329503

RESUMEN

Hydrogen can serve as an electron donor for chemolithotrophic acidophiles, especially in the deep terrestrial subsurface and geothermal ecosystems. Nevertheless, the current knowledge of hydrogen utilization by mesophilic acidophiles is minimal. A multi-omics analysis was applied on Acidithiobacillus ferrooxidans growing on hydrogen, and a respiratory model was proposed. In the model, [NiFe] hydrogenases oxidize hydrogen to two protons and two electrons. The electrons are used to reduce membrane-soluble ubiquinone to ubiquinol. Genetically associated iron-sulfur proteins mediate electron relay from the hydrogenases to the ubiquinone pool. Under aerobic conditions, reduced ubiquinol transfers electrons to either cytochrome aa 3 oxidase via cytochrome bc 1 complex and cytochrome c 4 or the alternate directly to cytochrome bd oxidase, resulting in proton efflux and reduction of oxygen. Under anaerobic conditions, reduced ubiquinol transfers electrons to outer membrane cytochrome c (ferrireductase) via cytochrome bc 1 complex and a cascade of electron transporters (cytochrome c 4, cytochrome c 552, rusticyanin, and high potential iron-sulfur protein), resulting in proton efflux and reduction of ferric iron. The proton gradient generated by hydrogen oxidation maintains the membrane potential and allows the generation of ATP and NADH. These results further clarify the role of extremophiles in biogeochemical processes and their impact on the composition of the deep terrestrial subsurface.

13.
Int J Syst Evol Microbiol ; 70(12): 6226-6234, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33112221

RESUMEN

The genus Acidihalobacter has three validated species, Acidihalobacter ferrooxydans, Acidihalobacter prosperus and Acidihalobacter aeolinanus, all of which were isolated from Vulcano island, Italy. They are obligately chemolithotrophic, aerobic, acidophilic and halophilic in nature and use either ferrous iron or reduced sulphur as electron donors. Recently, a novel strain was isolated from an acidic, saline drain in the Yilgarn region of Western Australia. Strain F5T has an absolute requirement for sodium chloride (>5 mM) and is osmophilic, growing in elevated concentrations (>1 M) of magnesium sulphate. A defining feature of its physiology is its ability to catalyse the oxidative dissolution of the most abundant copper mineral, chalcopyrite, suggesting a potential role in biomining. Originally categorized as a strain of A. prosperus, 16S rRNA gene phylogeny and multiprotein phylogenies derived from clusters of orthologous proteins (COGS) of ribosomal protein families and universal protein families unambiguously demonstrate that strain F5T forms a well-supported separate branch as a sister clade to A. prosperus and is clearly distinguishable from A. ferrooxydans DSM 14175T and A. aeolinanus DSM14174T. Results of comparisons between strain F5T and the other Acidihalobacter species, using genome-based average nucleotide identity, average amino acid identity, correlation indices of tetra-nucleotide signatures (Tetra) and genome-to-genome distance (digital DNA-DNA hybridization), support the contention that strain F5T represents a novel species of the genus Acidihalobacter. It is proposed that strain F5T should be formally reclassified as Acidihalobacter yilgarnenesis F5T (=DSM 105917T=JCM 32255T).


Asunto(s)
Ectothiorhodospiraceae/clasificación , Genoma Bacteriano , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , Cobre , ADN Bacteriano/genética , Hierro/metabolismo , Hibridación de Ácido Nucleico , Oxidación-Reducción , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Azufre/metabolismo , Australia Occidental
14.
Res Microbiol ; 171(7): 215-221, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32805394

RESUMEN

A novel, obligately anaerobic, acidophilic bacterium (strain I2511), isolated from sediment in an abandoned copper mine, was shown to couple the oxidation of organic electron donors to the reduction of both zero-valent sulfur and ferric iron in acidic media. The isolate was an obligate heterotroph that used a variety of organic compounds as electron donors and required yeast extract for growth. Alternative electron acceptors (sulfate, tetrathionate, thiosulfate and nitrate) were not used by the novel isolate. The strain grew as motile, endospore-forming rods, and was mesophilic and moderately acidophilic, with a growth rate of 0.01 h-1 at optimum pH (3.7) and temperature (35 °C). Analysis of its 16S rRNA gene sequence placed strain I2511 within the phylum Firmicutes, distantly related to validated species. Phylogenetic analysis and physiological traits indicate that the novel strain represents a species of a candidate novel genus. Strain I2511 was included in a microbial consortium in a low pH "hybrid" sulfidogenic bioreactor designed to remove chalcophilic metals from metal-contaminated liquors and was present in >50% relative abundance when bioreactor was operated at pH ∼ 2.0. Results indicate that the novel isolate could be applied in biotechnologies to treat acidic and neutral pH, metal-rich effluents.


Asunto(s)
Firmicutes/clasificación , Firmicutes/metabolismo , Sedimentos Geológicos/microbiología , Hierro/metabolismo , Azufre/metabolismo , Biodegradación Ambiental , Reactores Biológicos/microbiología , Metabolismo Energético/fisiología , Firmicutes/aislamiento & purificación , Minería , Compuestos Orgánicos/metabolismo , Filogenia , ARN Ribosómico 16S/genética , Microbiología del Suelo
15.
Microorganisms ; 8(7)2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32630740

RESUMEN

Reactive pyritic mine tailings can be populated by chemolithotrophic prokaryotes that enhance the solubilities of many metals, though iron-reducing heterotrophic microorganisms can inhibit the environmental risk posed by tailings by promoting processes that are the reverse of those carried out by pyrite-oxidising autotrophic bacteria. A strain (IT2) of Curtobacterium ammoniigenes, a bacterium not previously identified as being associated with acidic mine wastes, was isolated from pyritic mine tailings and partially characterized. Strain IT2 was able to reduce ferric iron under anaerobic conditions, but was not found to catalyse the oxidation of ferrous iron or elemental (zero-valent) sulfur, and was an obligate heterotrophic. It metabolized monosaccharides and required small amounts of yeast extract for growth. Isolate IT2 is a mesophilic bacterium, with a temperature growth optimum of 30 °C and is moderately acidophilic, growing optimally at pH 4.0 and between pH 2.7 and 5.0. The isolate tolerated elevated concentrations of many transition metals, and was able to grow in the cell-free spent medium of the acidophilic autotroph Acidithiobacillus ferrooxidans, supporting the hypothesis that it can proliferate in acidic mine tailings. Its potential role in mitigating the production of acidic, metal-rich drainage waters from mine wastes is discussed.

16.
Curr Issues Mol Biol ; 39: 63-76, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32083998

RESUMEN

The study of extreme acidophiles, broadly defined as microorganisms that grow optimally at pH values below 3, was initiated by the discovery by Waksman and Joffe in the early 1900s of a bacterium that was able to live in the dilute sulfuric acid it generated by oxidizing elemental sulfur. The number of known acidophiles remained relatively small until the second half of the 20th century, but since then has greatly expanded to include representatives of living organisms from within all three domains of life on earth, and notably within many of the major divisions and phyla of Bacteria and Archaea. Environments that are naturally acidic are found throughout the world, and others that are man-made (principally from mining metals and coal) are also widely distributed. These continue to be sites for isolating new species, (and sometimes new genera) which thrive in acidic liquor solutions that contain concentrations of metals and metalloids that are lethal to most life forms. The development and application of molecular techniques and, more recently, next generation sequencing technologies has, as with other areas of biology, revolutionized the study of acidophile microbiology. Not only have these studies provided greater understanding of the diversity of organisms present in extreme acidic environments and aided in the discovery of largely overlooked taxa (such as the ultra-small uncultivated archaea), but have also helped uncover some of the unique adaptations of life forms that live in extremely acidic environments. Thanks to the relatively low biological complexity of these ecosystems, systems-level spatio-temporal studies of model communities have been achieved, laying the foundations for 'multi-omic' exploration of other ecosystems. This article introduces the subject of acidophile microbiology, tracing its origins to the current status quo, and provides the reader with general information which provides a backdrop to the more specific topics described in Quatrini and Johnson (2016).


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Archaea/clasificación , Archaea/genética , Ecosistema , Concentración de Iones de Hidrógeno
17.
Extremophiles ; 24(2): 329-337, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31980944

RESUMEN

Strain MG, isolated from an acidic pond sediment on the island of Milos (Greece), is proposed as a novel species of ferrous iron- and sulfur-oxidizing Acidithiobacillus. Currently, four of the eight validated species of this genus oxidize ferrous iron, and strain MG shares many key characteristics with these four, including the capacities for catalyzing the oxidative dissolution of pyrite and for anaerobic growth via ferric iron respiration. Strain MG also grows aerobically on hydrogen and anaerobically on hydrogen coupled to ferric iron reduction. While the 16S rRNA genes of the iron-oxidizing Acidi-thiobacillus species (and strain MG) are located in a distinct phylogenetic clade and are closely related (98-99% 16S rRNA gene identity), genomic relatedness indexes (ANI/dDDH) revealed strong genomic divergence between strain MG and all sequenced type strains of the taxon, and placed MG as the first cultured representative of an ancestral phylotype of iron oxidizing acidithiobacilli. Strain MG is proposed as a novel species, Acidithiobacillus ferrianus sp. nov. The type strain is MGT (= DSM 107098T = JCM 33084T). Similar strains have been found as isolates or indicated by cloned 16S rRNA genes from several mineral sulfide mine sites.


Asunto(s)
Acidithiobacillus , Anaerobiosis , ADN Bacteriano , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S
18.
Adv Microb Physiol ; 75: 205-231, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31655738

RESUMEN

Redox transformations of sulfur, involving dissimilatory and assimilatory oxidation and reduction reactions, occurs in water bodies and terrestrial environments worldwide, leading to dynamic cycling of this element throughout the biosphere. In cases where zero-valent (elemental) sulfur, sulfate and other oxidized forms are used as electron acceptor in (primarily) anaerobic microbial metabolisms, the end product is hydrogen sulfide (HS- or H2S, dependent on pH). While neutrophilic and alkalophilic sulfidogenic prokaryotes have been known for many decades, acid-tolerant and acidophilic strains and species have been isolated and characterized only in the past twenty or so years, even though evidence for sulfide generation on these environments was previously well documented. This review outlines the background and current status of the biodiversity and metabolisms of sulfate- and sulfur-reducing prokaryotes that are metabolically active in low pH environments, and describes the developing technologies in which they are being used to remediate acidic waste waters (which are often metal-contaminated) and to recover metal resources.


Asunto(s)
Bacterias/metabolismo , Sulfatos/metabolismo , Azufre/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Biodegradación Ambiental , Biodiversidad , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Filogenia , Sulfatos/química , Azufre/química , Aguas Residuales/química , Aguas Residuales/microbiología
19.
Int J Syst Evol Microbiol ; 69(9): 2907-2913, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31274405

RESUMEN

The genus Acidithiobacillus currently includes seven species with validly published names, which fall into two major groups, those that can oxidize ferrous iron and those that do not. All seven species can use zero-valent sulfur and reduced sulfur oxy-anions as electron donors, are obligately chemolithotrophic and acidophilic bacteria with pH growth optima below 3.0. The 16S rRNA gene of a novel strain (CJ-2T) isolated from circum-neutral pH mine drainage showed 95-97 % relatedness to members of the genus Acidithiobacillus. Digital DNA-DNA hybridization (dDDH) values between strains and whole-genome pairwise comparisons between the CJ-2T strain and the reference genomes available for members of the genus Acidithiobacillus confirmed that CJ-2Trepresents a novel species of this genus. CJ-2T is a strict aerobe, oxidizes zero-valent sulfur and reduced inorganic sulfur compounds but does not use ferrous iron or hydrogen as electron donors. The isolate is mesophilic (optimum growth temperature 25-28 °C) and extremely acidophilic (optimum growth pH 3.0), though its pH optimum and maximum were significantly higher than those of non-iron-oxidising acidithiobacilli with validly published names. The major fatty acids of CJ-2T were C18 : 1ω7c, C:16 : 1ω7c/iso-C15 : 0 2-OH, C16 : 0 and C19 : 0 cyclo ω8c and the major respiratory quinone present was Q8. The name Acidithiobacillussulfuriphilus sp. nov. is proposed, the type strain is CJ-2T (=DSM 105150T=KCTC 4683T).


Asunto(s)
Acidithiobacillus/clasificación , Minería , Filogenia , Azufre/metabolismo , Microbiología del Agua , Acidithiobacillus/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Concentración de Iones de Hidrógeno , Hierro , Hibridación de Ácido Nucleico , Oxidación-Reducción , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Gales
20.
Trends Microbiol ; 27(3): 282-283, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30563727

RESUMEN

Acidithiobacillus ferrooxidans is by far the most widely studied of all extremely acidophilic prokaryotes. While it is found in many types of natural low-pH environments in a variety of geoclimatic contexts, it has been more widely cited in anthropogenic (mostly mine-impacted) environments. It is responsible for accelerating the oxidative dissolution of sulfide minerals, causing the generation of polluting acidic metal-rich drainage waters but also facilitating the recovery of base and precious metals from mineral leachates. It can colonize barren mineral landscapes, is a driver of ecological successions in acidic biotopes, and is an important model organism in astrobiology. It catalyses the dissimilatory oxidation of iron, sulfur, and hydrogen, and the reduction of iron and sulfur, and has a major impact in the geochemical cycling of these elements in low-pH environments. This infographic summarizes the fundamental phylogeny, physiology and genomic features of this extremophile.


Asunto(s)
Acidithiobacillus/clasificación , Acidithiobacillus/metabolismo , Filogenia , Acidithiobacillus/aislamiento & purificación , Concentración de Iones de Hidrógeno , Hierro/metabolismo , Metales/metabolismo , Oxidación-Reducción , Sulfuros/metabolismo , Azufre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...